Redis之所以性能强,最主要的原因就是基于内存存储。然而单节点的Redis其内存大小不宜过大,会影响持久化或主从同步性能。 我们可以通过修改配置文件来设置Redis的最大内存:
# 格式:
# maxmemory <bytes>
# 例如:
maxmemory 1gb
当内存使用达到上限时,就无法存储更多数据了。为了解决这个问题,Redis提供了一些策略实现内存回收。
内存过期策略
在学习Redis缓存的时候我们说过,可以通过expire命令给Redis的key设置TTL(存活时间)。
当key的TTL到期以后,再次访问name返回的是nil,说明这个key已经不存在了,对应的内存也得到释放。从而起到内存回收的目的。
Redis本身是一个典型的key-value内存存储数据库,因此所有的key、value都保存在之前学习过的Dict结构中。不过在其database结构体中,有两个Dict:一个用来记录key-value;另一个用来记录key-TTL。
typedef struct redisDb {
dict *dict; /* 存放所有key及value的地方,也被称为keyspace*/
dict *expires; /* 存放每一个key及其对应的TTL存活时间,只包含设置了TTL的key*/
dict *blocking_keys; /* Keys with clients waiting for data (BLPOP)*/
dict *ready_keys; /* Blocked keys that received a PUSH */
dict *watched_keys; /* WATCHED keys for MULTI/EXEC CAS */
int id; /* Database ID,0~15 */
long long avg_ttl; /* 记录平均TTL时长 */
unsigned long expires_cursor; /* expire检查时在dict中抽样的索引位置. */
list *defrag_later; /* 等待碎片整理的key列表. */
} redisDb;
惰性删除
惰性删除:顾明思议并不是在TTL到期后就立刻删除,而是在访问一个key的时候,检查该key的存活时间,如果已经过期才执行删除。
// 查找一个key执行写操作
robj *lookupKeyWriteWithFlags(redisDb *db, robj *key, int flags) {
// 检查key是否过期
expireIfNeeded(db,key);
return lookupKey(db,key,flags);
}
// 查找一个key执行读操作
robj *lookupKeyReadWithFlags(redisDb *db, robj *key, int flags) {
robj *val;
// 检查key是否过期• if (expireIfNeeded(db,key) == 1) {
// ...略
}
return NULL;
}
int expireIfNeeded(redisDb *db, robj *key) {
// 判断是否过期,如果未过期直接结束并返回0
if (!keyIsExpired(db,key)) return 0;
// ... 略
// 删除过期key
deleteExpiredKeyAndPropagate(db,key);
return 1;
}
周期删除
周期删除:顾明思议是通过一个定时任务,周期性的抽样部分过期的key,然后执行删除。执行周期有两种:
- Redis服务初始化函数initServer()中设置定时任务,按照server.hz的频率来执行过期key清理,模式为SLOW
- Redis的每个事件循环前会调用beforeSleep()函数,执行过期key清理,模式为FAST
// server.c
void initServer(void){
// ...
// 创建定时器,关联回调函数serverCron,处理周期取决于server.hz,默认10
aeCreateTimeEvent(server.el, 1, serverCron, NULL, NULL)
}
// server.c
int serverCron(struct aeEventLoop *eventLoop, long long id, void *clientData) {
// 更新lruclock到当前时间,为后期的LRU和LFU做准备
unsigned int lruclock = getLRUClock();
atomicSet(server.lruclock,lruclock);
// 执行database的数据清理,例如过期key处理
databasesCron();
}
void databasesCron(void) {
// 尝试清理部分过期key,清理模式默认为SLOW
activeExpireCycle(
ACTIVE_EXPIRE_CYCLE_SLOW);
}
void beforeSleep(struct aeEventLoop *eventLoop){
// ...
// 尝试清理部分过期key,清理模式默认为FAST
activeExpireCycle(
ACTIVE_EXPIRE_CYCLE_FAST);
}
SLOW模式(低频高时长)规则:
- 执行频率受server.hz影响,默认为10,即每秒执行10次,每个执行周期100ms。
- 执行清理耗时不超过一次执行周期的25%.默认slow模式耗时不超过25ms
- 逐个遍历db,逐个遍历db中的bucket,抽取20个key判断是否过期
- 如果没达到时间上限(25ms)并且过期key比例大于10%,再进行一次抽样,否则结束
FAST模式(高频低时长)规则(过期key比例小于10%不执行 ):
- 执行频率受beforeSleep()调用频率影响,但两次FAST模式间隔不低于2ms
- 执行清理耗时不超过1ms
- 逐个遍历db,逐个遍历db中的bucket,抽取20个key判断是否过期
- 如果没达到时间上限(1ms)并且过期key比例大于10%,再进行一次抽样,否则结束
内存淘汰策略
内存淘汰:就是当Redis内存使用达到设置的上限时,主动挑选部分key删除以释放更多内存的流程。Redis会在处理客户端命令的方法processCommand()中尝试做内存淘汰:
int processCommand(client *c) {
// 如果服务器设置了server.maxmemory属性,并且并未有执行lua脚本
if (server.maxmemory && !server.lua_timedout) {
// 尝试进行内存淘汰performEvictions
int out_of_memory = (performEvictions() == EVICT_FAIL);
// ...
if (out_of_memory && reject_cmd_on_oom) {
rejectCommand(c, shared.oomerr);
return C_OK;
}
// ....
}
}
淘汰策略
Redis支持8种不同策略来选择要删除的key:
- noeviction: 不淘汰任何key,但是内存满时不允许写入新数据,默认就是这种策略。
- volatile-ttl: 对设置了TTL的key,比较key的剩余TTL值,TTL越小越先被淘汰
- allkeys-random:对全体key ,随机进行淘汰。也就是直接从db->dict中随机挑选
- volatile-random:对设置了TTL的key ,随机进行淘汰。也就是从db->expires中随机挑选。
- allkeys-lru: 对全体key,基于LRU算法进行淘汰
- volatile-lru: 对设置了TTL的key,基于LRU算法进行淘汰
- allkeys-lfu: 对全体key,基于LFU算法进行淘汰
- volatile-lfu: 对设置了TTL的key,基于LFI算法进行淘汰
LRU(Least Recently Used),最少最近使用。用当前时间减去最后一次访问时间,这个值越大则淘汰优先级越高。
LFU(Least Frequently Used),最少频率使用。会统计每个key的访问频率,值越小淘汰优先级越高。
那么,如何统计LRU和LFU呢? Redis的数据都会被封装为RedisObject结构:
typedef struct redisObject {
unsigned type:4; // 对象类型
unsigned encoding:4; // 编码方式
unsigned lru:LRU_BITS; // LRU:以秒为单位记录最近一次访问时间,长度24bit
// LFU:高16位以分钟为单位记录最近一次访问时间,低8位记录逻辑访问次数
int refcount; // 引用计数,计数为0则可以回收
void *ptr; // 数据指针,指向真实数据
} robj;
LFU的访问次数之所以叫做逻辑访问次数,是因为并不是每次key被访问都计数,而是通过运算:
- 生成0~1之间的随机数R
- 计算 (旧次数 * lfu_log_factor + 1),记录为P
- 如果 R < P ,则计数器 + 1,且最大不超过255
- 访问次数会随时间衰减,距离上一次访问时间每隔 lfu_decay_time 分钟,计数器减掉对应值
Comments NOTHING